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1. Introduction

Recent developments have given us a much better understanding of the degeneracy counting

formula for 1
4 -BPS dyons in N = 4 string compactifications.1 This formula has been

considerably refined from its original form in ref. [1] where it was first proposed. One

such refinement consists of specifying the integration contour in the degeneracy formula

and noting that different contours can lead to different answers for the degeneracy [2,

3] (for a review, see ref. [4]). The effect of varying the integration contours is in the

form of discontinuous jumps in the degeneracy whenever the contour crosses a pole in the

integration variable and picks up the corresponding residue. This has been interpreted as

due to the decay of some 1
4 -BPS dyons into a pair of 1

2 -BPS dyons at curves of marginal

stability, which are computed using the BPS mass formula.

Because for large charges the decaying states are black holes, a mechanism is needed

to explain exactly how these decay on curves of marginal stability. The answer turns out

to be [5, 6] that 1
4 -BPS black holes (for a given set of charges) exist both in single-centre

and multi-centre varieties. For the latter, the separations of the centres are determined

by the moduli [7]. If we specialise to two-centred dyons with both centres being 1
2 -BPS,

then it was shown in ref. [5] that as we approach a curve of marginal stability the two

centres fly apart to infinity. On the other side of the curve the constraint equation has no

1This formula really computes a supersymmetric index, and in what follows when we say “degeneracy”

we will always be referring to this index
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solutions. This explains the phenomenon of marginal stability and jumping in the counting

formula, in terms of the disintegration of two-centred black holes. It should be noted that

the degeneracy of single-centred black holes with the same charges does not vary across

moduli space, they exist either everywhere or nowhere.

In these developments, the only type of marginal decay that plays a role is into two
1
2 -BPS final states. Also, the only multi-centred black holes needed to complete the expla-

nation are those with a pair of 1
2 -BPS centres. In ref. [5] the correspondence between these

two situations was derived for some special cases, while in ref. [6] it is shown to hold in

generality, namely for any charge vectors and any point in the entire SL(2)
U(1) × SO(6,22)

SO(6)×SO(22)

moduli space of N = 4 compactifications.

However, there are many more types of marginal decays in the theory, and in one

sense they are far more generic. These decays are into a pair of 1
4 -BPS final states, or into

three or more final states each of which can be 1
2 -BPS or 1

4 -BPS. In another sense these

decays are “rare”, as it has been shown [8 – 10] (at least for unit-torsion initial dyons) that

they take place on curves of marginal stability that have a co-dimension > 1 in the moduli

space.2 Therefore these have been labelled “rare decays”. In particular they cannot lead

to jumps in the degeneracy (or rather, index) formula.3 Nevertheless the existence of such

decay modes is of importance in understanding the behaviour of dyons as we move around

in moduli space, and we will study them here for their own sake as well as for possible

interesting physical consequences that they may turn out to have.

In ref. [9] these curves were precisely characterised as circles in the upper half-plane

labelled by the parameter τ corresponding to the SL(2)/U(1) factor of the moduli space.4

These circles depend on the other moduli as well. However, as was demonstrated in refs. [8 –

10], there are additional conditions that need to be imposed on the remaining moduli

in order to make the decay possible. These latter conditions have not yet been worked

out. In this paper we will obtain these conditions and thereby completely characterise the

codimension > 1 subspace on which rare decays can take place.

It is also known that there exist multi-centred dyonic black holes with two 1
4 -BPS

centres, or three or more centres each of which can be 1
2 - or 1

4 -BPS. However, because

the degeneracy formula does not jump at curves of marginal stability, these multi-centred

dyons have not played a role in studies of dyons in N = 4 compactifications. In particular

they have not been related to marginal decays into two 1
4 -BPS final states or multiple final

states, and in fact such a relation does not seem necessary for the state-counting problem.

Nevertheless, in what follows we will argue that the relation between curves of marginal

stability and multi-centred black holes flying apart is quite generic.

In what follows, we start by briefly reviewing what is known about “rare” marginal

2Therefore they should not technically be called “curves”, but we use this terminology anyway and hope

it does not cause confusion.
3For higher-torsion initial dyons the curves can be of codimension 1, but the index is still not expected

to jump, because of fermion zero modes. We will focus largely on unit-torsion dyons in this paper.
4In the type IIB on K3×T

2 description this τ is the modular parameter of the geometrical torus, hence

we sometimes refer to the τ UHP as the “torus moduli space” — although technically it would be more

accurate to call it the Teichmüller space of the torus.
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decays in N = 4 compactifications. Then we find a precise form for the constraints on

moduli space in order for such rare decays to take place. We examine and solve these

constraints in a variety of special cases, to give a flavour of what they look like. Then

using some known results on T-duality orbits, we will obtain the constraints in the general

case. Next we recursively identify the loci of marginal stability for multi-particle decays.

Finally we examine the special-geometry formula for generic multi-centred black holes and

write it in a form that relates their separations to curves of marginal stability for n ≥ 2-

body decays.

2. Marginal stability for N = 4 dyons

The electric and magnetic charge vectors of a dyon in an N = 4 string compactification

are elements of a 28 dimensional integral charge lattice of signature (6, 22). The formulae

for BPS mass involve a 28 × 28 matrix L, which in our basis will be taken to be:




0 II6 0

II6 0 0

0 0 −II16


 (2.1)

as well as a 28×28 matrix M of moduli satisfying MLMT = L. The inner product of charge

vectors appearing in the BPS mass is taken with the matrix L + M . In the heterotic basis

where the compactification is specified by a constant metric Gij , an antisymmetric tensor

field Bij and constant gauge potentials AI
i (where i = 1, 2, · · · , 6 and I = 1, 2, · · · , 16), this

matrix is [11, 12]:

L + M =




G−1 1 + G−1(B + C) G−1A

1 + (−B + C)G−1 (G − B + C)G−1(G + B + C) (G − B + C)G−1A

AT G−1 AT G−1(G + B + C) AT G−1A




(2.2)

Here C is a symmetric 6 × 6 matrix constructed from A as C = 1
2AT A, more concretely

Cij = 1
2AI

i A
I
j .

In this basis we parametrise the charge vectors explicitly as:

~Q =




~Q′
(6)

~Q′′
(6)

~Q′′′
(16)


 , ~P =




~P ′
(6)

~P ′′
(6)

~P ′′′
(16)


 (2.3)

where we have broken up the original vectors into three parts with 6,6 and 16 compo-

nents respectively. In subsequent discussions we will not explicitly write out the subscripts

(6), (16) that appear in the above formula.

The BPS mass formula for 1
4 -BPS dyons in N = 4 compactifications is as

follows [13, 14]:

mBPS( ~Q, ~P )2 =
1√
τ2

( ~Q − τ̄ ~P ) ◦ ( ~Q − τ ~P ) + 2
√

τ2

√
∆( ~Q, ~P ) (2.4)

– 3 –
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where

∆( ~Q, ~P ) ≡ (Q ◦ Q) (P ◦ P ) − (P ◦ Q)2 (2.5)

The inner products of charge vectors appearing in this formula are of the form:

Q ◦ P ≡ ~QT (L + M)~P (2.6)

The matrix L + M has 22 zero eigenvalues and therefore the inner product only contains

a projected set of 6 components from the original 28 components of the charge vector.

Explicitly, the zero eigenvectors take the form:



G + B + C AI

−1 0

0 −1


 (2.7)

where each column of the above matrix describes an independent zero eigenvector.

It is convenient to replace the inner product on charge vectors in eq. (2.6) by an

ordinary product acting on some projected vectors. To do this, define
√

L + M as a 28×28

matrix satisfying
√

L + M
T√

L + M = L + M . This will be ambiguous upto a “gauge”

freedom but we will select a specific solution that is particularly useful, namely:

√
L + M =




E−1 E−1(G + B + C) E−1A

0 0 0

0 0 0


 (2.8)

where E stands for the vielbein: Ea
i Ea

j = Gij .

With this matrix it is evident that the projected charges only have their first 6 com-

ponents nonzero, namely for any arbitrary vectors ~Q, ~P the projected vectors ~QR, ~PR de-

fined by:
~QR =

√
L + M ~Q, ~PR =

√
L + M ~P (2.9)

are 6-component vectors. The components of these vectors are moduli dependent and not

quantised. On the projected vectors, one only needs to consider ordinary inner products,

for example ~QT
R

~QR is equal (by construction) to ~QT (L + M)~Q. Hence in what follows we

will denote this quantity either by ~Q ◦ ~Q or equivalently by ~QR · ~QR, and analogously for

other inner products.

Within the 6-dimensional projected charge space, the electric and magnetic charge

vectors of the initial dyon span a 2-dimensional plane. Decay of a 1
4 -BPS dyon into a

set of decay products with quantised charge vectors (~Q(1), ~P (1)), · · · , ( ~Q(n), ~P (n)) can take

place only when the plane spanned by the projected charge vectors of each decay product

coincides with this plane (this is the condition for all states to be mutually 1
4 -BPS):

(
~Q

(i)
R

~P
(i)
R

)
=

(
mi ri

si ni

)(
~QR

~PR

)
(2.10)

When there are just two decay products and both are 1
2 -BPS, the pair of decay products

defines a 2-plane. Charge conservation then implies that this plane coincides with the

– 4 –
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plane of the original charge vectors, so in this very special case the above requirement

imposes no conditions on the moduli. Indeed, the numbers mi, ri, si, ni are then integers

and the above relation holds between the full (quantised) charge vectors, not only the

projected ones. Marginal decay takes place on a wall of marginal stability whose equation

is explicitly known (see ref. [2] and references therein). In all other cases, the numbers

mi, ri, si, ni are non-integral and moduli-dependent. In these cases the above condition

puts additional constraints on the background moduli M . Our goal here is to identify

these constraints explicitly.

For a two-body decay into 1
4 -BPS constituents, once the constraints are satisfied and we

find the numbers m1, r1, s1, n1 (the corresponding numbers m2, r2, s2, n2 are determined by

charge conservation) the condition for marginal decay is expressed in terms of the curve [9]:

(
τ1 −

m1 − n1

2s1

)2

+

(
τ2 +

E
2s1

)2

=
1

4s2
1

(
(m1 − n1)

2 + 4r1s1 + E2
)

(2.11)

Here we have restricted to the case of unit-torsion dyons, so we have put m = n = 1 with

respect to the notation in ref. [9]. Also, E is defined by:

E ≡ 1√
∆

(
~Q(1) ◦ ~P − ~P (1) ◦ ~Q

)
(2.12)

Interestingly the numerator of this quantity is the Saha angular momentum between one

of the final-state dyons and the initial state, evaluated with respect to the moduli at

infinity. Exchanging the role of the two final-state dyons sends E → −E . It also sends

m1−n1 → (1−m1)− (1−n1) = −(m1−n1) and r1, s1 → −r1,−s1. The curve of marginal

stability is invariant under this set of transformations, as it should be.

We now turn to the detailed study general two-body decays into 1
4 -BPS constituents.

We will find explicit expressions for the numbers m1, r1, s1, n1 in terms of the quantised

charge vectors ~Q, ~P , ~Q1, ~P1 and the moduli M . We will also explicitly characterise the loci

in moduli space where such rare decays are allowed.

3. Rare dyon decays

3.1 Analysis and implicit solution

It will be useful to define a quartic scalar invariant of four different vectors by:

∆( ~A, ~B; ~C, ~D) ≡ det

(
~A ◦ ~C ~A ◦ ~D
~B ◦ ~C ~B ◦ ~D

)
= ( ~A ◦ ~C)( ~B ◦ ~D) − ( ~A ◦ ~D)( ~B ◦ ~C) (3.1)

As explained above, the “◦” product is the moduli-dependent inner product involving the

matrix L + M . The above quantity is antisymmetric under exchange of the first pair or

last pair of vectors, and symmetric under exchange of the two pairs. The quartic invariant

of two variables defined earlier is a special case of this new invariant:

∆( ~Q, ~P ) = ∆( ~Q, ~P ; ~Q, ~P ) (3.2)

– 5 –
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Now start with the following vector equation that is part of eq. (2.10):

~Q
(1)
R = m1

~QR + r1
~PR (3.3)

Contracting this successively with ~QR and ~PR we find:

~Q
(1)
R · ~QR = m1

~Q2
R + r1

~QR · ~PR

~Q
(1)
R · ~PR = m1

~QR · ~PR + r1
~P 2

R (3.4)

Multiplying the first equation by ~P 2
R and the second by ~QR · ~PR and subtracting, we find:

m1∆( ~QR, ~PR) = ∆( ~QR, ~PR; ~Q
(1)
R , ~PR) (3.5)

which enables us to solve for m1. Repeating this process we can solve for r1, s1, n1 leading

to the result:
(

m1 r1

s1 n1

)
=

1

∆( ~QR, ~PR)

(
∆( ~QR, ~PR; ~Q

(1)
R , ~PR) ∆( ~QR, ~PR; ~QR, ~Q

(1)
R )

∆( ~QR, ~PR; ~P
(1)
R , ~PR) ∆( ~QR, ~PR; ~QR, ~P

(1)
R )

)
(3.6)

It follows that eq. (2.10) can be expressed as:

(
~Q

(1)
R

~P
(1)
R

)
=

1

∆( ~QR, ~PR)

(
∆( ~QR, ~PR; ~Q

(1)
R , ~PR) ∆( ~QR, ~PR; ~QR, ~Q

(1)
R )

∆( ~QR, ~PR; ~P
(1)
R , ~PR) ∆( ~QR, ~PR; ~QR, ~P

(1)
R )

)(
~QR

~PR

)
(3.7)

For fixed, quantised charge vectors ~Q, ~P of the initial dyon and ~Q(1), ~P (1) of the first decay

product (the charge of the second product is determined by charge conservation), the above

equation provides a set of constraints on the moduli that must be satisfied for the 1
4 → 1

4 + 1
4

decay to be possible.

In the above form, it is rather difficult to disentangle the constraints or to physically

understand their significance. Therefore we will consider a number of special cases. Along

the way we will see the advantage of using T-duality to bring the charges into a conve-

nient form and performing the analysis in that basis. Finally we write down the explicit

constraint equation in the general case, again in the chosen T-duality basis.

3.2 Explicit solution: special cases

(i) 1

2
-BPS final states. The case where the decay products are 1

2 -BPS should provide

no constraints on the moduli as this is a “non-rare” decay. This provides a check on our

equations. Inserting the 1
2 -BPS conditions:

~P (1) =
k1

l1
~Q(1), ~P (2) =

k2

l2
~Q(2) (3.8)

with ki, li integers, we find that:

(
m1 r1

s1 n1

)
=

(
k2

l2
− k1

l1

)
∆( ~Q

(1)
R , ~Q

(2)
R )

∆( ~QR, ~PR)

(
k2
l2

−1
k1k2
l1l2

−k1
l1

)
(3.9)

– 6 –
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We also have:

∆( ~QR, ~PR) =

(
k2

l2
− k1

l1

)2

∆( ~Q
(1)
R , ~Q

(2)
R ) (3.10)

Substituting in the above equation, we find:

(
m1 r1

s1 n1

)
=

1

k2l1 − k1l2

(
k2l1 −l1l2
k1k2 −k1l2

)
(3.11)

At this stage all moduli-dependence has disappeared from the matrix, and equation

eq. (2.10) indeed provides no constraints on the moduli. Rather, it reduces to an iden-

tity. It is also easy to see that k1l2 − k2l1 divides the torsion of the original dyon, so if

we are also considering the unit-torsion case then k1l2 − k2l1 = 1 and m1, r1, s1, n1 are all

manifestly integral [2].

(ii) Special charges and moduli. The next special case we will study has a restricted

set of charges. Additionally, some of the background moduli are set to a specific value,

namely zero in the chosen coordinates. We then examine the constraints on the remaining

moduli. In choosing special values for the moduli, we should in principle avoid loci of

enhanced gauge symmetry where the dyons we are studying would become massless.

Let us restrict ourselves to special initial-state charges given by:

~Q′ = (Q′
1, 0, · · · , 0), ~Q′′ = (Q′′

1, 0, · · · , 0), ~Q′′′ = 0 (3.12)

and
~P ′ = (0, P ′

2, 0, · · · , 0), ~P ′′ = (0, P ′′
2 , 0, · · · , 0), ~P ′′′ = 0 (3.13)

Next we set Bij = 0 = AI
i as well as Gij = 0, i 6= j. The above restrictions allow us

to choose the orthonormal frames Eai to be diagonal:

Eii = Ri, i = 1, 2, · · · , 6 (3.14)

with Ri the radii of the six compactified directions in the heterotic basis.

In the restricted subspace of moduli space that we are considering here, the matrix√
L + M reduces to:

√
L + M =




E−1 E 0

0 0 0

0 0 0


 (3.15)

with E given as in eq. (3.14). Therefore the projected initial-state charge vectors are:

~QR =




Q′

1
R1

+ Q′′
1R1

0

. . .

0


 , ~PR =




0
P ′

2
R2

+ P ′′
2 R2

0

. . .

0




(3.16)
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For this configuration we clearly have ~QR · ~PR = 0 and therefore the quartic invariant ∆ is:

∆(QR, PR) =

(
Q′

1

R1
+ Q′′

1R1

)2(P ′
2

R2
+ P ′′

2 R2

)2

(3.17)

We take the decay products to have generic charges ~Q(1), ~P (1) and ~Q(2), ~P (2) subject

of course to the requirement that they add up to ~Q, ~P . We then have:

~Q
(1)
R =




Q
(1)′

1
R1

+ Q
(1)′′

1 R1

Q
(1)′

2
R2

+ Q
(1)′′

2 R2

. . .

Q
(1)′

6
R6

+ Q
(1)′′

6 R6




, ~P
(1)
R =




P
(1)′

1
R1

+ P
(1)′′

1 R1

P
(1)′

2
R2

+ P
(1)′′

2 R2

. . .

P
(1)′

6
R6

+ P
(1)′′

6 R6




(3.18)

Now we can compute the quartic invariants appearing in eq. (3.7):

∆( ~QR, ~PR; ~Q
(1)
R , ~PR) =

(
Q′

1

R1
+ Q′′

1R1

)(
Q

(1)′

1

R1
+ Q

(1)′′

1 R1

)(
P ′

2

R2
+ P ′′

2 R2

)2

∆( ~QR, ~PR; ~QR, ~Q
(1)
R ) =

(
Q′

1

R1
+ Q′′

1R1

)2
(

Q
(1)′

2

R2
+ Q

(1)′′

2 R2

)(
P ′

2

R2
+ P ′′

2 R2

)

∆( ~QR, ~PR; ~P
(1)
R , ~PR) =

(
Q′

1

R1
+ Q′′

1R1

)(
P

(1)′

1

R1
+ P

(1)′′

1 R1

)(
P ′

2

R2
+ P ′′

2 R2

)2

∆( ~QR, ~PR; ~QR, ~P
(1)
R ) =

(
Q′

1

R1
+ Q′′

1R1

)2
(

P
(1)′

2

R2
+ P

(1)′′

2 R2

)(
P ′

2

R2
+ P ′′

2 R2

)

Had we not taken E to be diagonal, the expressions above would have quickly become very

complicated to write down.

Inserting the above expressions, and cancelling some common factors, the constraint

equation eq. (3.7) becomes:

(
Q′

1

R1
+ Q′′

1R1

)(
P ′

2

R2
+ P ′′

2 R2

)
~Q

(1)
R =

(
Q

(1)′

1

R1
+ Q

(1)′′

1 R1

)(
P ′

2

R2
+ P ′′

2 R2

)
~QR (3.19)

+

(
Q′

1

R1
+ Q′′

1R1

)(
Q

(1)′

2

R2
+ Q

(1)′′

2 R2

)
~PR

(
Q′

1

R1
+ Q′′

1R1

)(
P ′

2

R2
+ P ′′

2 R2

)
~P

(1)
R =

(
P

(1)′

1

R1
+ P

(1)′′

1 R1

)(
P ′

2

R2
+ P ′′

2 R2

)
~QR

+

(
Q′

1

R1
+ Q′′

1R1

)(
P

(1)′

2

R2
+ P

(1)′′

2 R2

)
~PR

These are 6+6 equations. However, the first two components of each set are identically

satisfied, as one can easily check. This is expected, and follows from the structure of

eq. (2.10) from which m1, r1, s1, n1 were determined. The remaining four components of

– 8 –
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each equation give the desired constraints on the moduli. Because of the way we have

chosen ~Q, ~P , the r.h.s. already vanishes on components 3 to 6, so the constraint is simply

that the l.h.s. vanishes. That in turn sets to zero the components 3 to 6 of the vectors ~Q
(1)
R

and ~P
(1)
R . Thus we find the constraints:

Q
(1)′

i

Ri

+ Q
(1)′′

i Ri = 0, i = 3, 4, 5, 6

P
(1)′

i

Ri

+ P
(1)′′

i Ri = 0, i = 3, 4, 5, 6 (3.20)

If the components of ~Q(1), ~P (1) are all nonvanishing, this implies that:

Ri =

√√√√−Q
(1)′

i

Q
(1)′′

i

=

√√√√− P
(1)′

i

P
(1)′′

i

, i = 3, 4, 5, 6 (3.21)

In this special case the constraint equations have some particular features. First of all, for

generic charge vectors ~Q(1) and ~P (1), there are no solutions. To have any solutions at all,

one must choose the charges of the decay products in such a way that the second equality

in the above equation can be satisfied. In other words, the sign of Q
(1)′

i and Q
(1)′′

i must be

opposite (for i = 3, 4, 5, 6), and the same has to be true for P (1). In this case we find four

constraints on the moduli, which fix the compactification radii R3, R4, R5, R6.

For this special case, the numbers m1, r1, s1, n1 in eq. (2.10) are given by:

m1 =

Q
(1)′

1
R1

+Q
(1)′′

1 R1

Q′

1
R1

+Q′′

1R1

, r1 =

Q
(1)′

2
R2

+ Q
(1)′′

2 R2

P ′

2
R2

+ P ′′
2 R2

s1 =

P
(1)′

1
R1

+P
(1)′′

1 R1

Q′

1
R1

+Q′′

1R1

, n1 =

P
(1)′

2
R2

+ P
(1)′′

2 R2

P ′

2
R2

+ P ′′
2 R2

(3.22)

We see that m1, s1 depend only on R1 and r1, n1 depend only on R2.

So far the decay products were taken to have generic charges (consistent of course

with charge conservation). The situation changes if we choose less generic decay products.

Earlier we took all components of ~Q(1), ~P (1) are nonvanishing. However if Q
(1)′

i = Q
(1)′′

i =

P
(1)′

i = P
(1)′′

i = 0 for any i ∈ 3, 4, 5, 6 then the corresponding constraint eq. (3.20) is

trivially satisfied. In this situation we will have a reduced number of constraints. As an

example if the above situation holds for all directions except i = 3 and if
Q

(1)′

3

Q
(1)′′

3

=
P

(1)′

3

P
(1)′′

3

then

there is only a single constraint coming from the above equations. The curve of marginal

stability provides one more constraint, so the decay will take place on a codimension-2

subspace of the restricted moduli space in which we are working for this class of examples.

The fact that in some situations there are no solutions (for example if we do not satisfy

that Q
(1)′

i and Q
(1)′′

i have opposite signs for i = 3, 4, 5, 6) simply means that our restricted

moduli space fails to intersect the marginal stability locus in that case.

If the charges Q
(1)′

i , Q
(1)′′

i , P
(1)′

i , P
(1)′′

i vanish for all i ∈ 3, 4, 5, 6 then there are no

constraints (beyond the curve of marginal stability). This can correspond to two distinct

– 9 –



J
H
E
P
1
2
(
2
0
0
8
)
0
5
6

situations. One is that the final states are now both 1
2 -BPS. The other possibility is that

they are still 1
4 -BPS, but the apparent contradiction of having no constraints on moduli is

resolved by the fact that we are already in a restricted subspace of the moduli space.5

(iii) General charges, “diagonal” moduli. In this subsection we study rare decays

allowing for completely general charges ~Q, ~P , but we will restrict the moduli so that the

formulae are tractable. The situation turns out to be rather similar to the case studied in

the previous subsection.

Considerable simplification can be brought about in the formulae by using some known

results on T-duality orbits from ref. [15] (as reviewed in appendix A of [16]). For this

purpose we first change basis from the L matrix used in ref. [16]:

L′ =




σ1 0 · · · 0 0 · · · 0

0 σ1 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0

0 · · · 0 σ1 0 · · · 0

0 · · · −LE8 0

0 · · · 0 −LE8




(3.23)

to the one we have defined in eq. (2.1). Here σ1 is a Pauli matrix, which occurs 6 times in

the above, and LE8 is the Cartan matrix of E8.

In fact using T-duality we will be able to restrict to charge vectors that have the last

16 components vanishing, therefore we can ignore these components and work in a space

of 12-component vectors. We then use a 12 × 12 matrix X that satisfies

XLXT = L′ (3.24)

to map the equations in ref. [16] to our basis.

Now the relevant result of T-duality orbits states that any pair of primitive charge

vectors ~Q, ~P can be brought via T-duality to the form:

~Q′ = (Q′
1, 0, · · · , 0), ~Q′′ = (Q′′

1, 0, · · · , 0), ~Q′′′ = 0

~P ′ = (P ′
1, P

′
2, 0, · · · , 0), ~P ′′ = (P ′′

1 , P ′′
2 , 0, · · · , 0), ~P ′′′ = 0 (3.25)

This is close to our previous special case, but with P ′
1, P

′′
1 turned on. It is no longer a

special case but represents the general case in a special basis.

As in the previous example, we restrict the moduli by requiring AI
i = Bij = 0 and

Gij = 0, i 6= j. Then one finds the projected charges to be:

~QR =




Q′

1
R1

+ Q′′
1R1

0

. . .

0


 , ~PR =




P ′

1
R1

+ P ′′
1 R1

P ′

2
R2

+ P ′′
2 R2

0

. . .

0




(3.26)

5We thank the referee for pointing out an erroneous statement in a previous version.
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The quartic invariant is then found to be:

∆(QR, PR) =

(
Q′

1

R1
+ Q′′

1R1

)2(P ′
2

R2
+ P ′′

2 R2

)2

(3.27)

which is actually the same as in the previous, simpler case where we chose a special subset

of charges. Computing m1, r1, s1, n1 as in the previous subsection and inserting them back,

the constraint equation can now be written:

(
Q′

1

R1
+ Q′′

1R1

)(
P ′

2

R2
+ P ′′

2 R2

)
~Q

(1)
R = (3.28)

[(
Q

(1)′

1

R1
+ Q

(1)′′

1 R1

)(
P ′

2

R2
+ P ′′

2 R2

)
−
(

Q
(1)′

2

R2
+ Q

(1)′′

2 R2

)(
P ′

1

R1
+ P ′′

1 R1

)]
~QR

+

(
Q′

1

R1
+ Q′′

1R1

)(
Q

(1)′

2

R2
+ Q

(1)′′

2 R2

)
~PR

(
Q′

1

R1
+ Q′′

1R1

)(
P ′

2

R2
+ P ′′

2 R2

)
~P

(1)
R =

[(
P

(1)′

1

R1
+ P

(1)′′

1 R1

)(
P ′

2

R2
+ P ′′

2 R2

)
−
(

P
(1)′

2

R2
+ P

(1)′′

2 R2

)(
P ′

1

R1
+ P ′′

1 R1

)]
~QR

+

(
Q′

1

R1
+ Q′′

1R1

)(
P

(1)′

2

R2
+ P

(1)′′

2 R2

)
~PR

These equations are slightly more complicated than the previous case for which we had
~Q ◦ ~P = 0, but the extra complication is only in the first two components, which are again

trivially satisfied. For the remaining components we find:

Q
(1)′

i

Ri

+ Q
(1)′′

i Ri = 0, i = 3, 4, 5, 6

P
(1)′

i

Ri

+ P
(1)′′

i Ri = 0, i = 3, 4, 5, 6 (3.29)

These are exactly the same as the constraints we found in the previous case. The analysis

is therefore also the same: the constraints cannot be satisfied for generic charges because

our restricted moduli space need not intersect the marginal stability locus. When they

can be satisfied there are at most four constraints, though there will be less if some of the

decay product charges vanish.

3.3 General charges, “triangular” moduli

In this subsection we restrict the moduli in the most minimal way consistent with finding

a simple form of the constraint equation. The restriction will be a kind of “triangularity”

condition:

(G + B + C)i1 = (G + B + C)i2 = 0, i = 3, 4, 5, 6 (3.30)

with no separate constraints on G,B,A other than the above.
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As before, we use T-duality to put the initial charges into the form of eq. (3.25).

Thereafter, we are still free to make T-duality transformations involving the last four

components of ~Q′ and ~Q′′ and all 16 components of ~Q′′′. The T-duality group is thus

restricted to an SO(4, 20;ZZ). These transformations will affect the charges of the decay

products while leaving the initial dyon unchanged. Using them we bring the electric charges

of the first decay product to the form:

~Q(1)′ = (Q
(1)′

1 , Q
(1)′

2 , Q
(1)′

3 , 0, · · · , 0),

~Q(1)′′ = (Q
(1)′′

1 , Q
(1)′′

2 , Q
(1)′′

3 , 0, · · · , 0),

~Q(1)′′′ = 0 (3.31)

Finally we use an SO(3, 19;ZZ) subgroup of T-duality that preserves all the charge vectors

that we have so far fixed, to bring the magnetic charges of the first decay product to

the form:

~P (1)′ = (P
(1)′

1 , P
(1)′

2 , P
(1)′

3 , P
(1)′

4 , 0, · · · , 0),

~P (1)′′ = (P
(1)′′

1 , P
(1)′′

2 , P
(1)′′

3 , P
(1)′′

4 , 0, · · · , 0),

~P (1)′′′ = 0 (3.32)

The charges of the second decay product are determined by charge conservation.

Now we use the form of the projection matrix
√

L + M and write out eq. (2.10) ex-

plicitly, after first multiplying through by Eij :

Q
(1)′

i + (G + B + C)ijQ
(1)′′

j = m1Q
′
i + m1(G + B + C)ijQ

′′
j

+ r1P
′
i + r1(G + B + C)ijP

′′
k

P
(1)′

i + (G + B + C)ijP
(1)′′

j = s1Q
′
i + s1(G + B + C)ijQ

′′
j

+ n1P
′
i + n1(G + B + C)ijP

′′
j (3.33)

This is a set of 6 + 6 equations. Recall that Cij = AI
i A

I
j .

We immediately see that for our choice of T-duality frame for the initial charges, as

well as using the “triangularity” condition, the r.h.s. of the above equations vanishes for

i = 3, 4, 5, 6. Hence we find the constraint equations still in a relatively simple form:

Q
(1)′

i + (G + B + C)ijQ
(1)′′

j = 0, i = 3, 4, 5, 6

P
(1)′

i + (G + B + C)ijP
(1)′′

j = 0, i = 3, 4, 5, 6 (3.34)

These are then the 4+4 constraints on rare dyon decays, though still with the triangularity

restriction on moduli and in a specific T-duality frame. They must be supplemented by

the curve of marginal stability, for which we need to know the numbers m1, r1, s1, n1.

The first two components of each line of equations eq. (3.33) determine the values of

m1, r1, s1, n1. From the first line of those equations we find:

Q
(1)′

1 + (G + B + C)1i

−→
Q

(1)′′

i = m1Q
′
1 + m1(G + B + C)1iQ

′′
i + r1P

′
1 + r1(G + B + C)1iP

′′
i

Q
(1)′

2 + (G + B + C)2iQ
(1)′′

i = r1P
′
2 + r1(G + B + C)2iP

′′
i (3.35)
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Solving for r1 from the second equation above, we get:

r1 =
Q

(1)′

2 + (G + B + C)2iQ
(1)′′

i

P ′
2 + (G + B + C)2iP

′′
i

(3.36)

Inserting this in the first equation determines m1:

m1 =
(
P ′

2 + (G + B + C)2iP
′′
i

)−1(
Q′

1 + (G + B + C)1iQ
′′
i

)−1
×

×
[(

Q
(1)′

1 + (G + B + C)1iQ
(1)′′

i

)(
P ′

2 + (G + B + C)2iP
′′
i

)

−
(
Q

(1)′

2 + (G + B + C)2iQ
(1)′′

i

)(
P ′

1 + (G + B + C)1iP
′′
i

)]
(3.37)

Similarly we solve for s1, n1 from the second line of eq. (3.33) and find:

n1 =
P

(1)′

2 + (G + B + C)2iP
(1)′′

i

P ′
2 + (G + B + C)2iP

′′
i

s1 =
(
P ′

2 + (G + B + C)2iP
′′
i

)−1(
Q′

1 + (G + B + C)1iQ
′′
i

)−1
×

×
[(

P
(1)′

1 + (G + B + C)1iP
(1)′′

i

)(
P ′

2 + (G + B + C)2iP
′′
i

)

−
(
P

(1)′

2 + (G + B + C)2iP
(1)′′

i

)(
P ′

1 + r(G + B + C)1iPi

)]
(3.38)

Admittedly these are somewhat complicated expressions for the numbers m1, r1, s1, n1

that one needs to plug in to determine the curve of marginal stability on the torus moduli

space. It is conceivable that a more opportune choice of variables could simply them further.

Nevertheless, the constraints eq. (3.34) on the remaining moduli are rather simple.

3.4 Explicit solution: the general case

We now turn to the case where the initial and final charges are completely general and the

moduli are generic as well. Most of the relevant analysis has already been done in previous

subsections and it only remains to write down the result. However, as we will see, the

equations rapidly become messy – despite the use of T-duality transformations - once we

use completely general moduli.

Let us again start by writing out eq. (2.10) explicitly, but now without any condition

on the moduli. After multiplying through by Eij, we find the equations:

Q
(1)′

i + (G + B + C)ijQ
(1)′′

j = m1Q
′
i + m1(G + B + C)ijQ

′′
j

+ r1P
′
i + r(G + B + C)ijP

′′
k

P
(1)′

i + (G + B + C)ijP
(1)′′

j = s1Q
′
i + s1(G + B + C)ijQ

′′
j

+ n1P
′
i + n1(G + B + C)ijP

′′
j (3.39)

which are actually the same as eq. (3.33) that we had before. The difference is that the

r.h.s. no longer vanishes for any of the components (earlier that was guaranteed by the

triangularity condition that we had assumed on the moduli). Notice that even in the most
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general case, we have gained something by fixing the initial and final state charges using

T-duality. The last 16 components of these charges have all been set to 0, and the result

is that most of the terms involving the gauge field moduli AI
i have disappeared. The only

appearance of these moduli is through Cij = AI
i A

I
j which in turn only appears in the

combination G + B + C.

This time our strategy will be to choose any 4 equations from the above set of 12 to

determine the variables m1, n1, r1, s1. Then in the remaining 8 equations we insert these

values for the variables and obtain the desired constraint equations. Picking the first 2

components for each charge vector, we find:

Q
(1)′

1 + (G + B + C)1iQ
(1)′′

i = m1Q
′
1 + m1(G + B + C)1iQ

′′
i + r1P

′
1 + r(G + B + C)1iP

′′
i

Q
(1)′

2 + (G + B + C)2iQ
(1)′′

i = r1P
′
2 + r1(G + B + C)2iP

′′
i (3.40)

Solving for r1 from the second equation above, we get:

r1 =
Q

(1)′

2 + (G + B + C)2iQ
(1)′′

i

P ′
2 + (G + B + C)2iP

′′
i

(3.41)

and inserting this in the first equation, we find m1:

m1 =
(
P ′

2 + (G + B + C)2iP
′′
i

)−1(
Q′

1 + (G + B + C)1iQ
′′
i

)−1
×

[(
Q

(1)′

1 + (G + B + C)1iQ
(1)′′

i

)(
P ′

2 + (G + B + C)2iP
′′
i

)

−
(
Q

(1)′

2 + (G + B + C)2i

−→
Q

(1)′′

i

)(
P ′

1 + r(G + B + C)1iPi

)]
(3.42)

Similarly we solve for s1, n1 from the second equation and find:

n1 =
P

(1)′

2 + (G + B + C)2iP
(1)′′

i

P ′
2 + (G + B + C)2iP ′′

i

(3.43)

and

s1 =
(
P ′

2 + (G + B + C)2iP
′′
i

)−1(
Q′

1 + (G + B + C)1iQ
′′
i

)−1
×

[(
P

(1)′

1 + (G + B + C)1iP
(1)′′

i

)(
P ′

2 + (G + B + C)2iP
′′
i

)

−
(
P

(1)′

2 + (G + B + C)2iP
(1)′′

i

)(
P ′

1 + (G + B + C)1iPi

)]
(3.44)

We feed in these values of m1, n1, r1, s1 into the remaining 8 equations to find the most

general constraint equations on the moduli:

Q
(1)′

i + (G + B + C)ijQ
(1)′′

j = m1

(
Q′

i + (G + B + C)ijQ
′′
j

)
+ r1

(
P ′

i + (G + B + C)ijP
′′
j

)

P
(1)′

i + (G + B + C)ijP
(1)′′

j = s1

(
Q′

i + (G + B + C)ijQ
′′
j

)
+ n1

(
P ′

i + (G + B + C)ijP
′′
j

)

(3.45)

here i = 3, 4, 5, 6, and m1, n1, r1, s1 are given in the above equations. We see that the

values of m1, n1, r1, s1 come out the same as in the previous special case, however the
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constraints are much more complicated and — unlike in all the previous special cases –

depend explicitly on these numbers. Nevertheless, the above equations embody the most

general kinematic constraints on moduli space to allow a two-body decay of a dyon of

charges ~Q, ~P into 1
4 -BPS final state with charges ~Q(1) and ~P (1) (the charges of the second

state being, as always, determined by charge conservation). It is quite conceivable that a

more detailed study of possible T-duality bases will allow us to further simplify the most

general case, and we leave such an investigation for the future.

4. Multi-particle decays

So far in this work, as well as in previous work [9], we have written down conditions for

decay of a dyon into two 1
4 -BPS final states. One could certainly imagine extending these

considerations to three or more final states. Indeed, it turns out rather simple to do so and

we will here discuss an iterative way to obtain the relevant formulae.

Consider the decay of a dyon of charges (~Q, ~P ) into n decay products of charges

( ~Q(1), ~P (1)), ( ~Q(2), ~P (2)), · · · ( ~Q(n), ~P (n)). The condition for marginality of such a decay is

the condition for the original dyon to go into two decay products of charges ( ~Q(1), ~P (1)) and∑n
i=2(

~Q(i), ~P (i)), along with the condition for the second decay product to further decay

into say (~Q(2), ~P (2)) and
∑n

i=3(
~Q(i), ~P (i)). The latter condition must in turn be iterated.

Each of these is a two-body decay (with both final states being 1
4 -BPS) so we already know

the condition for each one to take place. The intersection of all these loci will give the

marginal stability locus for the multiparticle decay.

There is a simpler way to iterate the condition. Instead of looking at the curve where

the second decay product decays into further subconstituents, as above, we can simply

consider the collection of all marginal stability loci for the decays:

(
~QR

~PR

)
→
(

~Q
(i)
R

~P
(i)
R

)
+

(
~QR − ~Q

(i)
R

~PR − ~P
(i)
R

)
, i = 1, 2, · · · , n (4.1)

For each of these, the curve is precisely eq. (2.11) with the subscript “1” replaced by “i”.

We write it as:

C(mi, ri, si, ni) ≡
(

τ1 −
mi − ni

2si

)2

+

(
τ2 +

Ei

2si

)2

− 1

4s2
i

(
(mi−ni)

2+4risi+E2
i

)
= 0 (4.2)

where

Ei ≡
1√
∆

(
~Q(i) ◦ ~P − ~P (i) ◦ ~Q

)
(4.3)

In addition to this curve we have the constraints on the remaining moduli as in section 3

above. Those too can be expressed in terms of the single decay product labelled “i”. Now

to find the condition for a multi-dyon decay, we simply take the intersection of all these

loci of marginal stability. As the number of final states increases, we will generically find

loci of marginal stability of increasing codimension.
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5. Multi-centred black holes

It was argued in refs. [5, 6] that the curves of marginal stability for decays of the form:

1

4
-BPS → 1

2
-BPS +

1

2
-BPS (5.1)

are also the curves of disintegration for two-centred 1
4 -BPS black holes whose centres are

individually 1
2 -BPS. The method used in these works, which we will summarise and extend

below, was to use a constraint equation due to Denef [7] to express the separation between

the centres of such a black hole in terms of charges and moduli. Requiring that the

separation be infinite places a condition on charges and moduli which turns out to be

precisely the curve of marginal stability, eq. (2.11), specialised to this decay.

Now Denef’s constraint equation is not confined to two-centred black holes alone, but

applies to any number of centres. It has a different limitation: it is defined in the context of

N = 2, rather than N = 4 compactifications, and relies on special geometry. Nevertheless,

for the cases to which it applies, we can certainly use it in the N = 4 context. We will do so

and will find that the curves of marginal stability for generic decays to n final states, which

we discussed in section 4 above, are precisely reproduced by the constraint equations for

multi-centred black holes. This suggests a more generic relationship between multi-particle

decays and multi-centred black holes than has been previously considered.

To see this, we need to review the constraint equation of ref. [7] for multi-centred dyons,

that was re-discussed in the N = 4 context in the two-centred case in ref. [5].6 Let p(i)I , q
(i)
I

be the charges of the i-th centre where i = 1, 2, · · · , N . These charges are expressed in the

special-geometry basis.7 Let the 3-vector ~ri be the location of the i-th centre. And let the

moduli be encoded in the standard holomorphic special-geometry variables XI , FI . Then

the constraint equations are:

p(i)I Im (FI∞) − q
(i)
I Im (XI

∞) +
1

2

∑

j 6=i

p(i)Iq
(j)
I − q

(i)
I p(j)I

|~ri − ~rj|
= 0 (5.2)

Here the subscript ∞ indicates that the corresponding moduli are measured at spatial

infinity (for brevity of notation we will drop it when there is no risk of ambiguity). Note

that the numerators inside the summation correspond to the Saha angular momentum

between each pair of centres.

These are N equations for (N
2 ) pairwise distances between the centres. We analyse

them following the procedure in ref. [5] for the two-centred case. First of all, one of the

equations is redundant. Adding all the equations, we find:

pI Im (FI∞) − qI Im (XI
∞) = 0 (5.3)

6A sign in equation (3.2) of ref. [5] should be corrected so that it reads X1

X0 = −τ . This leads to some

sign changes in other equations there.
7As we will see, this differs by an interchange of some components from the standard basis used in N = 4

compactifications.

– 16 –



J
H
E
P
1
2
(
2
0
0
8
)
0
5
6

where (pI , qI) are the charges of the entire black hole. This provides one real constraint on

the extra modulus X0
∞. As the above equation is invariant under XI → λXI for real XI ,

as well as under XI → −XI , we see that the magnitude of X0 is undetermined by this

condition, while the phase is determined (in terms of the XI , I = 1, 2, 3) upto a two-fold

ambiguity. Another real constraint is now imposed in the form of a “gauge condition”:

XI F̄I − X̄IFI = −i (5.4)

This determines the magnitude of X0 but leaves intact the two-fold ambiguity in the phase.

The remaining N − 1 equations then provide constraints on the (N
2 ) separations.

For the case N = 2 we therefore have a single equation, which completely determines

the separation between the two centres. This works as follows. The relevant part of the

theory is described by the holomorphic prepotential:

F = −X1X2X3

X0
(5.5)

where the XI are complex scalar fields related to a subset of the K3× T 2 moduli, namely

τ = τ1 + iτ2 describing the 2-torus complex structure, and

M = diag(R̂−2, R−2, R̂2, R2) (5.6)

describing a 2-parameter subset of the remaining moduli (including the K3 moduli). The

precise relationship is:

X1

X0
= −τ,

X2

X0
= iRR̂,

X3

X0
= i

R̂

R
(5.7)

The gauge condition eq. (5.4) then tells us that:

|X0
∞|2 =

1

8R̂2 τ2

(5.8)

As in the previous sections, we will consider a dyon with charges ( ~Q, ~P ), but now each

taken to be 4-component (the first two components should be thought of as two of the six
~Q′ and the second two components constitute two of the six ~Q′′. The charges correspond

to unit torsion, namely:

g.c.d.(QiPj − PiQj) = 1 (5.9)

We begin by determining the modulus X0 in terms of the T-duality invariants P ◦ P,Q ◦
Q,P ◦Q, where as before the inner products are defined in terms of the moduli at infinity,

e.g. P ◦ P = P T (L + M)P .

As promised, we will use the transcription between the natural electric-magnetic basis
~P , ~Q for the type IIB superstring and the natural basis pI , qI for special geometry (see for

example ref. [5]):

qI = (Q1, P1, Q4, Q2), pI = (P3,−Q3, P2, P4) (5.10)

– 17 –



J
H
E
P
1
2
(
2
0
0
8
)
0
5
6

In addition we have:

Im (F0) = R̂2 Im (X0τ), Im (F1) = R̂2 Im (X0),

Im (F2) =
R̂

R
Re (X0τ), Im (F3) = RR̂ Re (X0τ)

(5.11)

while

Im (X0) = Im (X0), Im (X1) = − Im (X0τ),

Im (X2) = RR̂ Re (X0), Im (X3) =
R̂

R
Re (X0)

(5.12)

Inserting these into eqs. (5.3), (5.8), one finds:

X0 =
1

(2
√

2R̂τ2)

√
∆τ̄ + i (Q ◦ P τ̄ − Q ◦ Q)√

Q ◦ QMBPS

(5.13)

where MBPS is the BPS mass given by eq. (2.4).

Now let us assume our dyon has n centres of charges ( ~Q(i), ~P (i)):

(
~Q(i)

~P (i)

)
=

(
mi ri

si ni

)(
~Q
~P

)
, i = 1, 2, · · · , n (5.14)

with mi, ri, si, n1 integers satisfying:

n∑

i=1

mi =
n∑

i=1

ni = 1,
n∑

i=1

ri =
n∑

i=1

si = 0 (5.15)

From eq. (5.10) we find that the charges of the decay products in the qI , p
J basis are

given by:

q
(i)
I = (miQ1 + riP1, siQ1 + niP1,miQ4 + riP4,miQ2 + riP2)

p(i)I = (siQ3 + niP3,−(miQ3 + riP3), siQ2 + niP2, siQ4 + niP4)
(5.16)

Now the first term in eq. (5.2) can be written:

p(i)I Im (FI) − q
(i)
I Im (XI) = R̂ Re

(
−X0 X0τ

)(mi ri

si ni

)(
Q2

R
+ RQ4 − i(Q1

R̂
+ R̂Q3)

P2
R

+ RP4 − i(P1

R̂
+ R̂P3)

)

(5.17)

The invariants P ◦ P,Q ◦ Q,Q ◦ P are given by:

Q ◦ Q =

(
Q1

R̂
+ R̂Q3

)2

+

(
Q2

R
+ RQ4

)2

P ◦ P =

(
P1

R̂
+ R̂P3

)2

+

(
P2

R
+ RP4

)2

Q ◦ P =

(
Q1

R̂
+ R̂Q3

)(
P1

R̂
+ R̂P3

)
+

(
Q2

R
+ RQ4

)(
P2

R
+ RP4

)
(5.18)
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The column vector in eq. (5.17) depends on four combinations of Qi, Pi and therefore

cannot in general be expressed in terms of T-duality invariants. Therefore we restrict to

the special case, discussed in particular in ref. [5], for which Q1 = Q3 = 0. In this case only

three independent combinations appear in the column vector and it is easy to show that:

p(i)I Im (FI) − q
(i)
I Im (XI) = R̂Re X0

(
−1 τ

)(mi ri

si ni

)( √
Q ◦ Q

Q◦P+i
√

∆√
Q◦Q

)

=
s1

√
∆

2
√

2 τ2 MBPS

C(mi, ri, si, ni)

(5.19)

where C(mi, ri, si, ni) is the curve of marginal stability for multiparticle decays, defined in

eq. (4.2).

The numerator of the second term in eq. (5.2), denoted:

Jij ≡ p(i)Iq
(j)
I − p(j)Iq

(i)
I (5.20)

is the angular momentum between each pair of decay products evaluated in the moduli-

independent norm. We will denote the pairwise separation between the centres by:

Lij = |~ri − ~rj| (5.21)

Note that Jij = −Jji and Lij = Lji.

Inserting the above results into eq. (5.2), one finds that it can be expressed as follows:

C̃i +
∑

j 6=i

Jij

Lij

= 0 (5.22)

where

C̃i ≡
si

√
∆√

2 τ2 MBPS

C(mi, ri, si, ni) (5.23)

Clearly the first term in eq. (5.22) depends only on the charges of a single centre (as well

as the initial charges) while the second term depends on the charges of a pair of centres.

Note that we have
∑

i C̃i = 0. Thus we have shown that the curves of marginal stability

for multi-centred decays appear also from considerations of multi-centred black holes and

the constraints on the locations of their centres.

In the special case considered previously [5, 6] where the dyon has two 1
2 -BPS centres,

the corresponding curve of marginal stability is of codimension 1. In this case it is known

that the degeneracy of states jumps as we cross the curve. From the supergravity point

of view, it was suggested in the N = 2 context in ref. [7] and shown more explicitly in

the present N = 4 context in refs. [5, 6], that this decay occurs as a result of the two

centres flying apart to infinity at a curve of marginal stability. This is seen by specialising

eq. (5.22) to this case. As long as J12 6= 0, the separation L12 → ∞ when C̃i → 0. Moreover

for a fixed sign of J12, the separation L12 can be positive only on one side of the curve of

marginal stability. On the other side it is negative, which indicates that the corresponding

two-centred black hole does not exist.
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Now let us return to the more general case where there are two centres but both are
1
4 -BPS. As we have seen, in this case the locus of marginal stability is not a wall in moduli

space, but rather a curve of codimension ≥ 2. Therefore the degeneracy (index) formula

cannot jump as one crosses the curve. Hence one need not have expected any relationship

between marginal decays and multi-centred dyons. Nevertheless, we see that eq. (5.22)

continues to hold in the more general case (with the limitation that the charges are those

that can be embedded in an N = 2 compactification).

We interpret this as evidence that the relationship between dyon decay and the disinte-

gration of multi-centred black holes holds more generally than required by the degeneracy

formula. Therefore we conjecture that even with the most general charges, n-centred

black holes exist in N = 4 string compactifications with generic 1
4 -BPS centres for which

eq. (5.22) holds true. It would be worth trying to prove that this is the case, or else to

show that such solutions do not exist beyond the cases that can be embedded in the charge

space and moduli space of N = 2. An intermediate possibility also exists: that in N = 4

compactifications such multi-centred black holes do exist with arbitrary charges, but only

on a subspace of the moduli space.

Examining eq. (5.22) one sees that if the marginal stability condition C̃i = 0 is satisfied

for a particular i, then we must have:

∑

j 6=i

Jij

Lij

= 0 (5.24)

One possible solution is to have Lij → ∞ for all j 6= i. This means the ith centre has been

taken infinitely far away from all the others, in agreement with the picture of marginal

decay that we developed in section 4 above. Since the pairwise Saha angular momenta

Jij ≡ P (i) · Q(j) − P (j) · Q(i) cannot all be positive in every equation (since Jij = −Jji)

there could be other configurations where the C̃i = 0, except in the case of two centres. It

is not clear to us how these other solutions should be interpreted.

Note that in the above equation the angular momentum is measured with respect to

moduli-independent inner product P ·Q ≡ P T LQ unlike the angular momentum appearing

in the curve of marginal stability eq. (4.2) which is computed using the moduli-dependent

inner product P ◦Q ≡ P T (L+M)Q. One may think of the latter evolving to the former as

we follow the attractor flow from infinity to the horizon of the black hole. However it would

be nice to have a better physical understanding of the role of dyonic angular momenta in

these discussions.8

6. Conclusions

In this work we have obtained the loci of marginal stability for decays of 1
4 -BPS dyons into

any number of BPS constituents in N = 4 string compactifications. These loci appear as

equations constraining the 132 + 2 moduli, more precisely as a curve of marginal stability

8As is well-known, the dyonic angular momentum plays a physical role in the wall-crossing formulae [7,

17, 5, 6, 18, 19] that describe how the degeneracy jumps, but in the present discussions there are no walls

or jumps.
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in the upper-half-plane that represents a torus moduli space (in the basis of type IIB on

K3 × T 2, this is the geometric torus) as well as some more complicated equations on the

remaining moduli. While in this paper we worked with unit-torsion initial dyons, it should

be quite straightforward to extend our results to general torsion. We showed how to extend

our analysis to multi-particle decays, and found a relation between the loci of marginal

stability obtained in this way and the supergravity constraints on pairwise separations of

the centres of multi-centred black holes.

The physical role of “rare” marginal dyon decays, namely all those other than of a
1
4 -BPS dyon into two 1

2 -BPS dyons, has yet to be explored. Because such decays take place

on loci of codimension ≥ 2 in moduli space, they do not form “domain walls” across which

the degeneracy can jump. Therefore they do not affect the basic entropy or dyon counting

formulae. However it is certainly possible that they have other interesting physical effects

which may emerge on further investigation.
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